
[bookmark: top]

	[image:] [image:]
 		
			
			
			
			
		

					[image:]	Main Menu	[image:]	[image:]

	
			
	Home
	Introduction
	FAQs
	Downloads
	Contact Us
	Links
	Search

 			

		

					[image:]	Samples Menu	[image:]	[image:]

	
			
	Samples

[image:]Hello, World!

[image:]Graphics

[image:]Pages Sizes

[image:]Mix MigraDoc & PDFsharp

[image:]Combine Documents

[image:]Concatenate Documents

[image:]Split Document

[image:]Bookmarks

[image:]Two Pages on One

[image:]Watermark

[image:]Preview

[image:]Protected Document

[image:]Unprotect Document

[image:]Work on PDF Objects

[image:]XForms

	WebSamples
	Tools
	Charting

 			

		

	

 	

 	
			
			 	
				Home [image: arrow] Samples [image: arrow] Split Document 	[image: Make Text Bigger][image: Make Text Smaller][image: Reset Text Size]

	

	

	
 				
				Work on PDF Objects								

			
			
			PDF documents are based on objects like dictionaries, arrays, streams etc.
This advanced sample shows how to work directly on these underlying PDF
objects. Use this functionality to achieve PDF features that are not yet
implemented in PDFsharp, e.g. adding an 'open action' to a document.

// Get a fresh copy of the sample PDF file
string filename = "Portable Document Format.pdf";
File.Copy(Path.Combine("../../../../PDFs/", filename),
 Path.Combine(Directory.GetCurrentDirectory(), filename), true);

// Read document into memory for modification
PdfDocument document = PdfReader.Open(filename);

// The current version of PDFsharp doesn't support the concept of
// 'actions'. Actions will come in a future version, but if you need them
// now, you can have them 'handmade'.
//
// This sample works on PDF objects directly, therefore some knowledge of
// the structure of PDF is required.
// If you are not familiar with the portable document format, first read
// at least chapter 3 in Adobe's PDF Reference
// (http://partners.adobe.com/public/developer/pdf/index_reference.html).
// If you can read German, I recommend chapter 12 of 'Die PostScript &
// PDF-Bibel', a much more interesting reading than the bone-dry Adobe
// books (http://www.pdflib.com/de/produkte/mehr/bibel/index.html).
//
// The sample task is to add an 'open action' to the document so that it
// starts with the content of page 3 magnified just enough to fit the
// height of the page within the window.

// First we have to create a new dictionary that defines the action.
PdfDictionary dict = new PdfDictionary(document);

// According to the PDF Reference the dictionary requires two elements.
// A key /S that specifies the 'GoTo' action,
// and a key /D that describes the destination.

// Adding a name as value of key /S is easy.
dict.Elements["/S"] = new PdfName("/GoTo");

// The destination is described by an array.
PdfArray array = new PdfArray(document);

// Set the array as the value of key /D.
// This makes the array a direct object of the dictionary.
dict.Elements["/D"] = array;

// Now add the elements to the array. According to the PDF Reference it
// must be three for a page as the target of a 'GoTo' action.
// The first element is an indirect reference to the destination page.
// To add an indirect reference to the page three, we first need the
// PdfXRef object of that page.
// (The index in the Pages collection is zero based, therefore Pages[2])
PdfXRef xref = PdfInternals.GetXRef(document.Pages[2]);

// Add the reference to the third page as the first array element.
// Adding the xref (instead of the PdfPage object itself) makes it an
// indirect reference.
array.Elements.Add(xref);

// The second element is the name /FitV to indicate 'fit vertically'.
array.Elements.Add(new PdfName("/FitV"));

// /FitV requires the horizontal coordinate that will be positioned at the
// left edge of the window. We set -32768 because Acrobat uses this value
// to show the full page (it means 'left aligned' anyway if the window is
// so small that a horizontal scroll bar is required).
array.Elements.Add(new PdfInteger(-32768));

// Now that the action dictionary is complete, we can add it to the
// document's object table.
// Adding an object to the object table makes it an indirect object.
document.Internals.AddObject(dict);

// Finally we must add the action dictionary to the /OpenAction key of
// the document's catalog as an indirect value.
document.Internals.Catalog.Elements["/OpenAction"] =
 PdfInternals.GetXRef(dict);

// Using PDFsharp we never deal with object numbers. We simply put the
// objects together and PDFsharp does the rest.

// Save the document...
document.Save(filename);
// ...and start a viewer.
Process.Start(filename);
			

		
					
				
				< Prev				
					

					
				
				Next >				
				

					
			
			[Back]			
			

			 	

	

	
	

New! We no longer maintain this site.
Visit the new PDFsharp and MigraDoc Foundation Homepage. © 2009 empira Software GmbH | Impressum | Created with Joomla!

